
People | Software | Happiness™

AardRock
Vision: Agile Business

Author: Martien van Steenbergen

Version: 2 Date: Winter 2007

Help us continue to help others and feel free to make a donation for your copy of this poster in AardRock’s bank account: Postbank 9 48 33 85 or PayPal Martien@AardRock.COM. HARTelijk dank.

Business
Long-term Commitment
Long-term dedication, commitment and

involvement focuses on success and a fruitful

relationship. Go for the long-term and grow a

profound and healthy, sustainable business and

organization.

Quarterly Contracts
A quarterly happiness check and temperature

reading allows all parties to look backward and

forward to assess the effectiveness and joy of

working together.

The decisions are ones of allocating business

resources and belong in upper management.

However, all present can contribute, and should

do so in a frank, honest, non-defensive and

constructive way. It gives all stakeholders the

opportunity to tune and extend the relationship.

The happiness check also gives the opportunity to

loosen up or terminate the agreement if desired.

Finally, this quarterly recommitment meeting

is a good kick-off for another fruitful development

episode.

Software development continues as long as

returns on investment make it viable. Consulting

and coaching are no exception and will eventually

be scaled down.

It is our intention to get you up to and self-

supportive as soon as possible, leaving behind a

thriving sharp and focused team that excels in its

practice.

Valuable Stories
Requirements, features and crystal clear

acceptance criteria are captured as Valuable

Stories—user scenarios as discrete units of value

creation mapped to specific software features.

Stories are the basic elements incremental

funding during agile development. Completing

Valuable Stories earn Royalty Points.

Incremental Funding
Incremental funding quantifies the financial

benefits—value—of individual features of a

software development project and optimizing the

delivery sequence for maximum financial impact,

while reducing risk.

Success Brings Bonus
A fixed price project has the serious potential of

losing out on quality: you’re running out of time

(and resources), yet the project must be delivered

on the deadline. On the other hand, on a time

and material basis, development can be endless,

delivering too little, too late, while still having to

pay up.

An excellent way to align the interests of

all stakeholders is to provide a bonus for timely

completion of the project. The control given

by agile planning makes it very likely that the

development team will be able to collect.

The evil twin of the completion bonus is the

late penalty. Again, agile planning gives the

development team an advantage when agreeing

to a late penalty. The team can be quite sure that

they will complete the system on time, so they are

unlikely to have to pay.

You can even go a step beyond that and make the

whole a community-owned project.

Results
A Solution that You Want to Buy
The end result is an excellent (software) solution

that people want to buy. A solution that works as

advertised. A solution that is cost-effective, easy

to use, highly evolvable and low in maintenance

and customer care. A solution that helps clients

succeed and results in a profitable enterprise

for both client and supplier. It’s fast, beautiful,

menu-free, dead simple to operate, and a pleasure

to use.

It’s beautiful and breakthrough. Unprecedented.

People lust for it.

Besides an excellent solution filling in a key need

in the market, it also generates concrete results

like a common vocabulary, pattern languages for

organization, community, architecture, process

and design, a comprehensive user manual and

realistic estimates for future versions.

Quality without a Name
The richness of the common vocabulary through

the extensive use of patterns and pattern

languages, the comprehensive user manual, the

personas, the smooth agile processes, the focus

on a solid architecture, the predictable rhythm of

sprints, development episodes and the quarterly

releases all add up to a comfortable and highly

evolvable team, process and product with a

Quality Without A Name and a Great Place to

Work.

Evolvability is Key
For extremely profitable price/quality ratios, aim

to maximize evolvability for all stakeholders by:

minimize the efforts to develop, release and •	

maintain your product;

maximize scalability and evolvability;•	

maximize innovation to happen elsewhere;•	

maximize adopting & setting open standards •	

for quality, processes and technology.

The evolvability quality requirement transcends

and includes all other “ilities” like performance,

scalability, maintainability, reliability, resilience,

and security.

User Manual
The user manual is a clear and comprehensive part

of the product and allows project team, vendor,

press and users to confirm that the product works

as advertised, creating the right buzz in the

market.

Intelligence
Conway’s Law
Knit, weave and nourish the close relationship

that exists between the structure of an

organization and the artifacts that it builds.

Learning Organization
Turn tacit knowledge into explicit knowledge

through Excellence Guides and a coherent set of

Pattern Languages. Provide room for feedback,

retrospection and temperature readings.

Common Vocabulary
The on-line common vocabulary that emerges

during development is captured for both the

project team and the market and facilitates clear

communication between all stakeholders.

A shared language coheres the management

team, development team and users of the

product.

The extensive use of organizational,

architecture and design pattern languages add to

the rich and comprehensive vocabulary, easing

communication and reducing failures and errors

while capturing, consolidating and evolving a

collective intellect. Getting better is constantly

getting better.

Organizational Patterns
Organizational patterns are applied to enable a

piecemeal growth of team and product. Rapid

feedback and temperature readings lead to the

emergence of new organizational patterns. The

organizational patterns also foster the use of

a common vocabulary, allowing late joiners to

quickly get up to speed and contribute to the

product’s success.

Community Patterns
Community patterns help to create the initial

communities and to evolve them over time. Use

the community patterns to grow both the end-

user community and developer community.

The community patterns focus on five key

areas: process, the marketplace, fairness, product

development, and quality and stability.

Healthy and smart communities turn

companies into winners.

Architecture Patterns
Architecture patterns are essential to guarantee

good scalability, performance, security, reliability,

availability, evolvability, etc. Applying and

evolving the architectural patterns is key to

maximizing return on investment and profit, and

minimizing marketing, sales and customer care

efforts.

Design Patterns
Design patterns are just like architecture patterns,

yet on a smaller scale. Design patterns found

in the industry can be applied, and new ones

will emerge and documented, speeding up

development and transforming tacit knowledge

for a few into explicit knowledge for others.

Project Management Patterns
Project management patterns help the

development team to enter a state of flow, where

production and quality come effortlessly. They

have to do with the work of the organization and

the manner in which that work is structured.

It focuses on schedule, process, tasks, and in

particular the structures needed to support good

work progress.

Piecemeal Growth
Piecemeal growth helps you grow the organization

and its processes together. It is reminiscent of

concurrent engineering approaches that grow the

process and product together.

Architecture Everywhere
Deep insights on organizational structuring

in light of growing insight into the system

architecture.

Excellence Guides
Excellence Guides collect and document the do’s

and don’ts for all team members. The principal

format is “You must...”, “You must not...”, “You

should...”, and “You should not...”.

For example: You must Develop customer

scenarios before the Design phase. These rules of

the game capture the knowledge and practices

and help later joiners get up to speed quickly.

Create and evolve Excellence Guides for

Usability Engineering, Development, Program

Management, Marketing, Product Design,

Localization, Content Publishing, and Testing.

Predictable Velocity
After each sprint, velocity becomes more and more

predictable. Both individual and team velocity

exhibit better predictability as the project unfolds.

Changes in team or technology have buffered

impact on velocity, allowing for comfortable

planning and releases, and realistic estimates.

Quarterly Release Rhythm
The quarterly release rhythm brings calmness

to both the market and the development

team. These 13-week development episodes

provides clear and predictable deadlines for all

stakeholders.

Suit these 13 week development episodes to fit

what feels natural to you:

12 sprints of 1 week;•	

6 sprints of 2 weeks;•	

3 sprints of 4 weeks; or•	

4 sprints of 3 weeks.•	

Each development episode with one “week out

of time” to celebrate the previous one and get

ready for the next one.

Each release is named after the releases

season; for example the product version 2008

Spring release. Optionally, use automatic

software updates to ease maintenance at client

installations.

A Great Place to Work
Shared values and open communication help

create a vibrant and healthy environment where

individuals can exceed their goals while having

fun.

Innovation
User Community
Grow a vibrant and active user community. Turn

some of them into evangelists and ambassadors.

And listen. Listen proactively to what they are

saying. Design short feedback loops so that they

feel heard. Breed fanship and consider crowd-

sourcing.

Crowd-Sourcing
Connecting customers into a collective intelligence

and encouraging them to talk to each other, to

form affinity groups and hobby tribes, will breed

smarter and more loyal customers quicker while

creating smarter products and services.

Therefore:

Make customers as smart as you are.•	

Connect customers to customers•	

Choose technology that connects.•	

Imagine your customers as employees.•	

Community-Owned
Everyone who joins the community has the

right to own a share in the co-op. The co-op is

established for the advancement of technological

entrepreneurship and for the benefit of its

members. The whole idea is to tie productivity to

reward.

The co-op’s profit is your profit. The size of

your piece of the pie depends on your level of

participation in the community.

As a co-op member, you get a vote on all

matters respecting the co-op and are entitled to

patronage dividends in the form of cash and/or

member shares as determined by the governing

board in response to member participation within

the community.

Your work, visibility, activity and contribution

collects Royalty Points as payment for your work,

and Glory Points for participation—both for as

long as your work drives profit. The more results

you contribute and the more you participate, the

more dividends you’ll earn. The pay-out is simple:

Pay-out = Your Royalty Points / Total Royalty

Points * Profit.

Directors (co-op community members elected

by people like you) ensure equity and profits are

shared.

Thriving Open Source
Most of the smart people do not work for you. So

innovation happens elsewhere. Tap into this vast

source of innovation and creativity by making

everything you do open source—when not in

conflict with your competitive position. Adopt

a dual licensing strategy to create a viable and

healthy commercial open source effort.

Make sure you set up an appropriate developer

community process. Mix and match open source

and crowd-sourcing into a flourishing community-

owned enterprise.

Make giving and sharing your second nature.

Sharing is multiplying.

Consciousness
Green & Conscious Computing
Put Planet before People, Profit and Products,

since in the end, it will benefit all, creating a

Whole Earth.

Proactive study and practice of using computing

resources efficiently. Take into account the so-

called triple bottom line of economic viability,

social responsibility, and environmental impact.

Select vendors and partners with a proven

track record for green computing or “conscious

computing”. Google, Apple Computer, and Sun

Microsystems are leading various efforts in

conscious computing.

People | Software | Happiness™

AardRock
Vision: Agile Business

Author: Martien van Steenbergen

Version: 2 Date: Winter 2007

Help us continue to help others and feel free to make a donation for your copy of this poster in AardRock’s bank account: Postbank 9 48 33 85 or PayPal Martien@AardRock.COM. HARTelijk dank.

Principles
Principles of Practice

Planet1.	 —Focus attention on resilience and

sustainability for our planet and our company,

and in that order, profitably, consciously.

Friends2.	 —Make friends while having fun.

Wealth3.	 —Intensely focus on building wealth

for our clients by symbiosis.

Diversity4.	 —Work to ensure diversity of

people, communities, and technologies.

Interoperable5.	 —Work to ensure that

technologies used as part of the system are

fully interoperable with one another, on the

highest semantical and spiritual level.

Innovative6.	 —Embrace methods,

innovations, technologies and solutions that

are unbelievably creative and disruptively

innovative.

Respect7.	 —Be open in vigorous debate and

dialogue; with deep respect for the individual

and the team.

Wisdom8.	 —Appreciate knowledge and wisdom.

Enlightenment9.	 —Encourage the

enlightenment and development of team

members and our clients.

Open10.	 —Freely and fully exchange information

relevant to our purpose, mission, vision and

principles unless it violates confidentiality

or materially diminishes our competitive

position.

Compassionate11.	 —Resolve conflict without

resort to economic, physical or other violence

or intimidation.

Principles of Organization
Open1.	 —Be open to owning membership by

any individual or institution subscribing to

the purpose, mission, vision and principles in

conducting activities that resonate with and

fuel our practice.

Expression2.	 —Have the right to self-organize

at any time, on any scale, in any form or

around any activity consistent with the

purpose, mission, vision and principles.

Fairness3.	 —Work to ensure that no member

obtains an intrinsic unfair advantage in the

system.

Commons4.	 —Work to ensure that voting rights

and membership (fees) are derived from a

common formula based on each members’

contribution to the system.

Involved5.	 —Conduct deliberations and

make decisions by bodies and methods that

reasonably represent all relevant and affected

parties and are dominated by none.

Empowered6.	 —Vest authority, perform

functions and use resources in the smallest or

most local part that includes all relevant and

affected parties.

Educe7.	 —Educe rather than compel behavior to

the maximum possible degree.

Practices
Risk Management
Risk—Next version of Windows ships too late.

Owner—Leadership team.

Impact—Will not be able to ship new version on

time.

Probability—High.

Risk Cost— Lost revenue; closing window of

opportunity; reputational damage.

Mitigation—1) User current stable version; 2)

Develop abstraction layer.

Mitigation Cost—Low: One month of delay but

still one month before planned release date.

The Risk List is managed on a daily basis.

Mitigation decisions are made during the weekly

planning game. Everyone can contribute to the

Risk List. The Project Manager owns the Risk

List. A Risk has clear ownership: either the

development or the management team.

A management team-owned risk is beyond

the development team’s ability to change

its probability of occurrence. A management

team-owned mitigation plan is one that the

development team will not undertake (but may

still track). Impact (low , medium, high) and

Probability (low, medium, high) are indicators for

the risk’s Exposure.

Organizational pattern language
We will use organizational patterns, which are

about people, in order to do effective (software)

development in a healthy, thriving organization.

The team leader and the management team

support shaping the organization and help

individuals and the organization to become

effective, instill a unity of purpose and apply

selected patterns.

Temperature Reading
Appreciation—“I appreciate you because/for...”

New Information—“Have I got news for you!”

Puzzles— “I’m confused about...”

Complaints and Recommendations— “My

complaint is… And here’s how I think we can

resolve it…”

Hopes & Wishes— “My wish is that you...”

Software projects can be chaotic and stressful.

Conduct temperature readings as a simple

yet powerful method to help the team achieve,

maintain, or regain a positive mindset. It helps

the team reduce tensions, solidify connections,

and surface important information, ideas, and

feelings—enabling team members to interact

more constructively and productively. It is a

superb technique to use at project milestones

or during team meetings for teams that work

together under demanding or deadline-driven

circumstances.

Lively Personas
Lively personas are a tool to use when designing

your product. Closely related to customer

scenarios or stories, lively personas define who

you're designing your product for. Using lively

personas helps to create a common language for

everyone designing the product and helps to avoid

the ambiguous term “users”.

Ideally, personas and scenarios are seamlessly

aligned. To achieve that ideal, make sure that

a relevant persona exists for each user who

you target, and then use only that persona in

a consistent and relevant way. To apply the full

power of personas, understand the nature of the

persona you’re using in the scenario.

User Manual
The User Manual, written and maintained by

the Mercenary Analyst, collects all stories in

a comprehensible and cohesive way. Elegant,

consistent, and clean. Both the code and the

manual must do and say the same. It's considered

a bug if they're not.

The Mercenary Analyst's primary

motivation is to get the software—not the

documentation—out faster! Mercenary Analyst

comes from the “hired gun” quality a Mercenary

Analyst might have; rides into town, gets the

early stuff documented, kisses his horse, saddles

up his girl, and rides off into the sunset.

Rapid Feedback & Reflection
Key questions to ask on a regular basis are:

What did we do well?•	

What have we learned?•	

What can we do better?•	

What still puzzles us?•	

The development process will change over time. A

project that begins using an adaptive process will

have a different process a year later. Over time,

the team will find what works for them and alter

the process to fit. This self-adaptive process helps

the team and the whole organization getting

better in getting better.

Daily Stand Up Meeting or Scrum
Everyday the team holds a short fifteen minute

meeting, called a scrum, where the team

runs through what it will do in the next day.

In particular, the team will surface the risks to

success that management needs to resolve. The

team also reports on what has been done so

management can keep track.

Test-driven Development
User Feedback Tests—Guides real users

through a session with real software and

the development and management team in

another room watching. Solves the “Don't

Make Me Think!” problem. Instills common

sense into the product.

Functional Tests—Exercise the system from

the user's point of view and define progress

to date.

Unit Tests—Exercise fine-grained components

within the system and help developers think

through the structure of their code.

Infrastructure Tests—Ensure that the

application subsystems are communicating

properly and deployment runs smoothly.

Continuous Integration
Continuous Integration solves many of the

issues that plague large-scale development:

avoids nasty surprises as the project nears

delivery: there is always a working application the

grows organically; good visibility into progress;

alignment of potentially distributed teams.

Requires commitment and some ingenuity and

reduces stress level on a project.

Automates Repetitive Activities—Integrates

so often that it becomes easy. Automated

deployment scripts reduces costs and errors,

eliminates ambiguities and forces clear

boundaries. Uses computer rather than human

power.

Little Changes Happen Often—Build

continuously to find and repair failures

when only a few things have changed. Gives

fine-grained control over the history of your

application.

Manifesto
Passion Manifesto
Creating good software needs passion—

passionate developers, who want to create

something wonderful; passionate customers,

who want something that will enrich their

lives. We don’t just choose people who are

technically gifted.

Passion thrives on freedom—freedom to

choose what we work on, and who we work

with. We don’t say “yes” to every customer.

Passion thrives on involvement—and to

be truly involved you need to understand the

context, including the economic context. All

our financials, including salaries, are open to

all our staff.

Maintaining passion means accepting

limits—in particular, limits to growth. We

would rather turn work away because we

don’t have anyone available than compromise

by hiring the wrong people.

You should do everything you can to

get the right people on the bus—this

is one of the few reasons to grow, because

collaborations between the right people will

create things no individual would imagine

Success means success for everyone—our

economic metric is profit per employee, not

overall profit or revenue.

Agile Manifesto
We are uncovering better ways of developing

organizations, software, and solutions by doing it

and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes •	

and tools.

Working software over comprehensive •	

documentation.

Customer collaboration over contract •	

negotiation.

Embracing to change over following a plan.•	

That is, while there is value in the items on  the

right, we value the items on the left more.

Rights
Client Rights
As a client and funder of the project, you have the

right to:

Plan on a large scale with investments and 1.	

options.

Set development priorities weekly.

See progress in the form of a working system 2.	

at the end of the first week, and to see a little

more functionality every week thereafter.

Updates of the schedule, good or bad, as soon 3.	

as the information is available.

Change your mind without paying exorbitant 4.	

costs.

Stop the project at any time and still own a 5.	

usable system on par with the investments

made up to date.

Developer Rights
As a developer, you have the right to:

Always know what needs to be produced, with 1.	

clear requirements, acceptance criteria, and

priorities.

Estimate work and have those estimates 2.	

respected by the rest of the team.

Honestly report progress with impunity.3.	

Produce high-quality work at all times.4.	

Know what is most important to work on next.5.	

Ask business-oriented questions whenever 6.	

they arise and even if they are uncomfortable

ones.

Facilitate a self-selecting team.7.	

Engage in joyful, exciting, challenging and 8.	

productive work.

Project Leader Rights
As a project lead or manager, you have the right

to:

An overall estimate of investments and results, 1.	

recognizing that reality will be different.

Move people between projects without paying 2.	

exorbitant costs.

Regular updates of progress resonating with 3.	

the rhythm of the business, and to help the

customer set overall priorities.

Focus on personal development of team 4.	

members.

Cancel the project and be left with a working 5.	

system reflecting the investment to date.

Architecture Board
The structure of the organization, processes,

teams, infrastructure, and software is the pivotal

responsibility of the Architecture Board—

providing just enough structures, standards and

conventions for creative tension and direction

and sufficient freedom for self-expression of

individuals and teams. It is, in fact, the principal

force behind a creative, innovative and chaordic

enterprise experiencing frequent states of flow.

The Architecture Board also puts up antennas

to pick up any new developments—technological,

organizational, economical, social, cultural—and

integrates these into the relevant areas of the

whole.

Last but not least, the Architecture Board

captures and documents good practices, lessons

learned, and experiences into Pattern Languages

and Excellence Guides. It actively shares these

across and beyond the community, thereby

creating an agile life-long learning organization. It

embodies the Community of Practice.

The Architecture Board has a wide focus and

sufficient depth when needed. It is accountable for

what is important besides the code and it rather

solves problems and craves solutions by ignoring

details. It keeps the organization as a big team

together, maintaining architectural integrity,

communicating and leading. And it buffers the

techies versus the non-techies. Wholeness.

Big Visible Charts
Track trends, history, progress, acceptance tests

and sprint burn-down, or sensitive subjects use a

simple Big Visible Chart on the wall and bring

important information to the attention of the

team, the client, and everyone else who passes

through the area.

Provide important information, even

politically sensitive information, without getting

personalities involved or hurting feelings.

Bigger is Better—A chart drawn on a sheet of

flip-chart paper can be seen from across the

room. It draws the eye, pulls you over to take

a closer look.

Casual is Better—Consider simple charts over

fancy, advanced, professionally designed

charts. Draw your chart with whiteboard

markers on a tablet of flip chart paper. You

can update it in seconds every day. If the chart

needs to be a bit different, rip it up and draw

a new one.

You'll save time, have more fun, and the charts

will be more personal and less mechanical.

